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Abstract. Transport and magnetotransport properties were analysed systematically in percolating mag-
netic nanostructures such as Ni-rich NiFe−SiO2 and Fe−SiO2 films. These granular magnetic films exhibit
giant Hall effect. We identified features which are common and unique to these systems. Among the features
are the correlation between a − log(T )-like temperature dependent resistivity and a particle size distribu-
tion having a large fraction of small nanometer sized particles, and the power law dependence between
the magnetoresistivity and the room temperature resistivity. Assuming the presence of nanometer sized
particles in the percolating conduction channels whose contributions are sensitive to temperature and the
external magnetic field, we developed a phenomenological model to explain all the common features.

PACS. 85.70.Kh Magnetic thin film devices: magnetic heads (magnetoresistive, inductive, etc.);
domain-motion devices, etc. – 72.15.Gd Galvanomagnetic and other magnetotransport effects –
75.60.-d Domain effects, magnetization curves, and hysteresis

1 Introduction

Spin-dependent transport phenomena have attracted
much attention since the discovery of giant magnetore-
sistance (GMR) in metallic multilayers like Fe/Cr or
Co/Cu [1–4]. It is widely believed that the GMR in
such conducting systems are results of spin-dependent
scattering from magnetically heterogeneous regions where
local magnetizations are antiferromagnetically arranged
[5,6]. Observation of GMR in immiscible magnetic granu-
lar composite films with a metallic matrix, such as Fe–Ag
or Co–Ag [7,8], and those with an insulating matrix, such
as Co–Al2O3 [9], indicate that spin-dependent scattering
or tunnelling [10] is generic in all inhomogeneous magnetic
nanostructures.

Ferromagnetic granular films in which giant Hall ef-
fect (GHE) was recently observed provide a new magnetic
nanostructure to study spin-dependent transports with
magnetic particles forming percolation conducting chan-
nels. GHE refers to a 104-fold enhancement in Hall resis-
tivity in ferromagnetic granular (NiFe)x−(SiO2)1−x films
for x near xc, the percolation metal volume fraction [11],
compared to that of a homogeneous ferromagnetic metal.
The effect cannot be explained via a simple percolation
theory that predicts a maximum enhancement factor of
∼ 20 [12] based on the percolation critical exponent for
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Hall resistivity g ∼ 0.4 [13] for a 1 µm thick film. Var-
ious attempts have been made to explain the giant Hall
effect [14–17] but they so far have been unsuccessful. In
fact, a complete microscopic theory for the GHE seems to
be beyond our reach at the present moment since even the
understanding of the extraordinary Hall effect in homoge-
neous transition metals is very limited [18,19]. The per-
colating labyrinth structure [20,12] in granular films adds
further complication to the problem. Despite the complex-
ity, the recently studied granular Fe–SiO2 films [21] seems
to indicate that there exist unique and universal features
associated with a new conduction mechanism and spin de-
pendent transports in magnetic metal-insulator nanocom-
posite films exhibiting giant Hall effect. In this paper, a
systematic comparison of transport and magnetotransport
properties in both (NiFe)x–(SiO2)1−x and Fex–(SiO2)1−x

films are carried out in which features common to the two
percolating magnetic nanostructures closed to the perco-
lation volume fraction, i.e., x→ xc, are presented. All the
experimental data reported in this paper have been pub-
lished in one form or another in references [11,12,14,15]
by some of the present authors and coworkers. Motivated
by the experimental features together with the observed
size distribution of small particles in these samples [12], a
phenomenological model is developed which captures the
essence of these common features and which, we believe,
also provides insights into the origin of the GHE.

The plan of the paper is as follows. In Section 2, we
identify and examine the implications of the common and
unique features in percolating magnetic granular films
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Fig. 1. Resistivity as a function of temperature for
Fe0.53−(SiO2)0.47 for various annealing conditions.

exhibiting GHE. Our phenomenological model is intro-
duced in Section 3 with results discussed and compared
with observed experimental features. Our findings are
summarized in Section 4

2 Characteristic features

In a series of experiments on GHE, Yan et al.
[11,12,14,15,20–22] studied in detail the physical proper-
ties of granular magnetic films. It was discovered that for
all samples studied so far exhibiting the giant Hall effect,
including both NiFe–SiO2 and Fe–SiO2 films which have
Hall coefficients of different signs [21] (positive(negative)
for NiFe–SiO2(Fe–SiO2)), there always exists a large re-
sistivity with a ρ(T ) ∼ − log(T )-like temperature de-
pendence. The resistivity reduces and the log(T )-like
behaviour goes away for samples annealed at high tem-
perature, together with the disappearance of giant Hall
effect. Figure 1 shows the temperature dependence of the
resistivity (normalized to the value at 5 K) on a loga-
rithmic scale for Fe0.53–(SiO2)0.47 under different anneal-
ing temperatures Ta. For annealing below 300 ◦C, under
which giant Hall effect exists (extraordinary Hall resis-
tivity ρxys ∼ 0.1 mΩcm, ρ ∼ 0.1 Ωcm), the temperature
dependent resistivity shows clearly a ∼ log(T )-like depen-
dence. Whereas, for annealing above 300 ◦C, under which
giant Hall effect disappears (ρxys ∼ 0.001 mΩcm), the
temperature dependence becomes metallic with consider-
ably lower resistivity (ρ ∼ 0.1 mΩcm). The same qualita-
tive features were also found in NiFe–SiO2 films [12].

We have also studied the magnetoresistivity of sam-
ples exhibiting giant Hall effect with magnetic field in
the plane of the film both along and perpendicular to
the current direction [22]. All geometries yield about the
same negative value for the magnetoresistivity in films
near the percolation threshold, both for NiFe–SiO2 and
Fe–SiO2 systems, indicating that the magnetoresistance is

Fig. 2. Magnetoresistivity, −∆ρ, as functions of resistivity,
ρ, in a log-log plot for NiFe−SiO2 (open circle) and Fe−SiO2

(open square), and temperature dependent part of resistivity,
∆ρ′, versus ρ for NiFe−SiO2 (filled circle).

a result of spin-dependent transport processes similar to
many inhomogeneous magnetic nanostructures in which
giant magnetoresistance were observed [1–9]. To investi-
gate further the transport mechanism of the magnetore-
sistance in the region of giant Hall effect, we study the
change in magnetoresistivity as a function of metal vol-
ume fraction in the range 52−65% for the as-deposited
films. The results are plotted in Figure 2 in which we show
the magnetoresistivity −∆ρ versus resistivity on a log-log
scale for Ni-rich NiFe–SiO2 (circle) and Fe–SiO2 (square)
samples measured at 300 K. Note that the values of −∆ρ
in Fe–SiO2 were divided by 4 to take into account the
difference in the saturation magnetization because −∆ρ
scales with M2 for a spin-dependent process. The solid
line in the figure is the fitting according to −∆ρ ∼ ρb,
with b ∼ 1.2. Note that scaling relationship between di-
rectly measurable physical variables such as resistivity and
magnetoresistivity is much more reliable than scaling with
(x− xc), since the former is insensitive to the determina-
tions of both the metallic volume fraction x and its criti-
cal value xc separating the metallic and insulating phases.
It is clear from Figure 2 that within experimental error
the same power law is found for both systems, suggest-
ing that the same spin-dependent transport mechanism is
functioning in both systems exhibiting the giant Hall ef-
fect, irrespective of the sign of the carriers and the details
of the microstructures.

3 Phenomenological model

We propose that the universal behaviour associated with
GHE observed in the two systems with very different
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microscopic characters are results of their common perco-
lating, granular structure. Our physical picture is based on
the TEM observation that even in the metallic phase, well
defined metallic clusters percolating throughout the whole
sample are absent [12]. Instead, the conducting channels
appear to be composed of metallic granular particles with
a wide distribution in size [12]. The average distance
between metallic grains decreases as the metal volume
fraction increases. It thus appears that the conduction
mechanism in these percolating nanostructures cannot be
described by conventional classical percolation model. In-
stead, quantum tunneling between particles at close dis-
tances is the dominant mechanism of conduction. At zero
temperature these systems should be described by quan-
tum percolation models. However, at temperatures high
enough so that the phase coherence between different tun-
neling events are lost, we may consider the system as a
collection of classical resistors, but with possibly a wide
distribution of resistances. Each metallic grain (resistor)
is like a quantum dot with a given size and its behaviour
has to be considered quantum mechanically when the size
of the grain is small. To understand the transport be-
haviour of a collection of these particles we first consider
a small metallic particle of size s3 in a percolating con-
ducting channel and study the problem of under what
condition the particle can be considered as conducting. In
general a metallic particle can be considered as conducting
if there is no energy barrier against transporting electrons
in and out of the particle. This is the case if the ther-
mal energy ∼ kBT of electrons is larger than the energy

level spacing inside the particle, ∆E(s) ∼ ~2

2m∗s2 , where

m∗ is the electron effective mass, or ∆E(s) ∼ e2

εs , where
ε is the effective dielectric constant, if Coulomb block-
ade effect is important [23]. In our granular systems in
which a large number of small particles with dimension
s ≤ 3 nm exist [12], it is expected that this finite size ef-
fect will be important. The small particles which behave
as metals at high temperature, would become insulating
at temperature kBT ≤ ∆E(s), leading to an increasing
resistance at low temperature. The behaviour of the sys-
tem can be described by a continuum percolation model,
in which the conducting network is formed by (classical)
resistors with a wide distribution of resistances [24–26].
The distribution of resistance depends on the size distri-
bution of metallic particles, as well as on temperature. In
the case when the particles are magnetized and with mag-
netization pointing in random directions, which is believed
to be the case in the absence of a strong magnetic field
aligning the magnetizations, there are additional energy
barriers between particles with magnetization pointing in
different directions [28]. These energy barriers are high-
est when the magnetization of the particles are pointing
in opposite directions [28]. These energy barriers are low-
ered when a large magnetic field is applied on the system,
since the magnetization of the particles will be aligned on
average, leading to decrease in resistances and negative
magnetoresistance.

While the actual distribution in resistances is diffi-
cult to determine in a sample, it is possible to construct

a phenomenological model which captures the essence of
the physical picture discussed above. To capture these ef-
fects at least qualitatively, we assume that the transport
properties of the magnetic granular systems under con-
sideration can be described by a continuum percolation
model near percolation threshold in which the resistivity
is given by the formula

ρ(T,H) =
ρ0

(xeff(T,H)− xc)t
, (1)

where ρ0 is a material dependent parameter, t is a critical
exponent [13] characterizing the resistivity, xeff(T,H) is
the effective conducting volume fraction, and H is the ex-
ternal magnetic field. In classical percolation problems in
three dimensions, the t-exponent is universal and takes on
the value t ∼ 2.0 [27]. It is, however, well known that in
continuum percolation, the critical exponent t is no longer
universal but with its precise value depending on the
form of the distribution in resistances among the resistors
[24,25]. Here, the exponent t is simply taken as a param-
eter [11] in our phenomenological model. For the effective
volume fraction, we expect from our previous discussion
that at zero external magnetic field,

xeff(T, 0) ∼

∫ ∞
s(T )

(s3)n(s)ds = x0 −

∫ s(T )

0

(s3)n(s)ds,

(2)

where n(s)ds is the number of particles in the sample with
linear dimension between s and s+ds, x0 =

∫∞
0

(s3)n(s)ds
is the metal volume fraction, which was determined by
EDX. The cutoff linear dimension s(T ) is determined by
the equation kBT = ∆E(s), and only particles with di-
mension larger than s(T ) contribute to conduction. At
finite magnetic field, we expect that xeff increases because
of alignment of magnetization among different particles
on average. The precise magnetic field dependence of this
effect is hard to estimate. However, at H > Hs where Hs

is the saturation magnetization field, the magnetic field
dependence of xeff should become weak. Therefore, we ex-
pect

xeff(T,H > Hs) ∼ xeff(T, 0) +∆xM(T ), (3)

where ∆xM(T ) ∼ A
∫∞
s(T )(λ)(s2)n(s)ds with A being a

constant depending on the microscopic details of the ma-
terial. The integral

∫∞
s(T )(λ)(s2)n(s)ds measures the av-

erage geometrical volume occupied by magnetic domain
walls between different grains where λ ∼ thickness of the
domain wall [28]. For samples where no measurable satu-
ration field Hs exists, a more microscopic model is needed
to describe ∆xM(T,H) and is beyond the scope of our
simple phenomenology.

Substituting equation (2) into equation (1), and as-
suming that the change in xeff is small, we obtain at zero
magnetic field,

ρ(T, 0) ∼ ρ∞

(
1 + t(

ρ∞

ρ0
)1/t

∫ s(T )

0

(s3)n(s)ds

)
, (4)
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Fig. 3. Particle size distributions (×1011/mm2) determined by
TEM (solid line) and from equation (5) using temperature de-
pendent resistivity data (dash-line) for (a) Ni0.55−(SiO2)0.45 as
deposited (© (TEM), ∇ (theory)), and (b) Ni0.55−(SiO2)0.45

annealed at 520 ◦C (� (TEM), 4 (theory)).

where ρ∞ = ρ0/(x0 − xc)t is the high temperature resis-
tivity. It follows that

dρ(T, 0)

dT
= tρ∞

(
ρ∞

ρ0

)1/t
ds(T )

dT
(s(T ))3n(s(T )), (5)

which provides a precise relation between dρ(T, 0)/dT
and particle size distribution n(s(T )) which can be
tested experimentally. In particular, in the temperature
range where ρ(T, 0) ∼ − log(T ), we find correspond-
ingly n(s) ∼ s−4. Notice that this behaviour is inde-
pendent of the origin of ∆E(s) and remains the same
as long as ∆E(s) ∼ s−a, with a ≥ 1. Rapid increase
in n(s) as s decreases was indeed observed experimen-
tally [12] for samples with ρ(T ) ∼ − log(T ). Note that
the n(s) ∼ s−4 behaviour disappears at small enough
s, as can be seen from magnetoresistance data in which
the ρ ∼ − log(T ) behaviour vanishes at high enough
temperature. For annealed samples in which the ρ(T ) ∼
− log(T ) behaviour is absent, it was also observed that
the rapid increase in n(s) at small s is destroyed and
the peak in n(s) was gradually shifted to higher values
of s when annealing temperature is increased [12]. The
same qualitative behaviour was also obtained from equa-
tion (5) using the experimental data for ρ(T, 0) as in-
put. Figure 3 shows the particle size distribution n(s)
for (NiFe)x–(SiO2)1−x as deposited films and films an-
nealed at 520 ◦C. The experimental data are obtained
by TEM measurements and reproduced from reference
[12], whereas the theoretical results are the size distri-
bution derived from equation (5) using the corresponding

resistivity data as input with ∆E(s) = ~2

2ms2 , where m
is the free electron mass. The qualitative, and to a cer-
tain extent quantitative, agreement between theory and
experiment is apparent. Fitting with ∆E(s) = e2/εs to
experimental data was also tried but the agreement with

experimental data is slightly worse. It should be stressed
that the agreement between theory and experiment indi-
cates that the phenomenological model captures the essen-
tial physics of the systems. However, it must be cautioned
that so far the available experimental data and the the-
ory are both too crude to determine precisely the origin
of ∆E(s) in our systems.

Our phenomenological model also predicts a scaling
relationship between the magnetoresistivity and the resis-
tivity. Using equations (1) and (3), it is easy to show that
the saturated magnetoresistivity ∆ρ is given by

∆ρ = −tρ∞

(
ρ∞

ρ0

)1/t

∆xM(T ). (6)

Using 300 K as the high temperature limit, we obtain
∆ρ ∼ (ρ∞)b ∼ ρb near the percolation threshold, where
b = 1 + t−1, which, within experimental accuracy, is con-
sistent with experimental values of b ∼ 1.2 ± 0.1 and
t ∼ 3.6 ± 1.0 [11]. From equation (4), our phenomeno-
logical theory also predicts that the temperature depen-
dent part of the resistivity at H = 0 should also scale

similarly as ∆ρ, i.e. ∆ρ′ ≡ ρ(T, 0) − ρ∞ ∼ (ρ∞)1+t−1

.
Taking T = 77 K, we also show in Figure 2 the tempera-
ture dependent part of resistivity ∆ρ′ versus resistivity ρ
(300 K) on a log-log scale for (NiFe)x–(SiO2)1−x samples
(filled circles). Here only samples with ρ ∼ 0.4 Ωcm or
above were considered since samples with lower resistivity
have minimum in the temperature dependence. The sim-
ilar scaling behaviour of ∆ρ and ∆ρ′ versus ρ is apparent
from the figure, as predicted by our simple model.

It should be emphasized that the temperature depen-
dence of resistivity and magnetoresistance are usually re-
sults of very different physical processes and it is highly
unusual that they both scale with resistivity with a simi-
lar critical exponent. The observed qualitative agreement
in the critical exponents of the two resistivities, thus,
strongly supports our physical picture that the temper-
ature and magnetic field dependent effective conduction
volume fraction dominates the physics of percolating mag-
netic nanostructures.

Our phenomenology in describing the dependence of
resistivity on the temperature, the magnetic field, and the
particle size distribution, in various percolating magnetic
nanostructures, is reasonably successful. This leads us to
the question of whether similar phenomenology can be
applied to describe the Hall resistances, and in particular,
whether the physical origin of the GHE can be identified
from our phenomenology. Following our previous analysis,
we propose that the Hall resistivity can be described by
the formula

ρxy(T,H) =
BR0

(xeff(T,H)− xc)g
, (7)

where R0 is a material dependent parameter and B = H+
4πM is the total magnetic field on the electrons in the sys-
tem. The Hall number RH ∼ ρxy/H ∼ (xeff(T,H)−xc)−g

and extraordinary resistivity ρxys ∼M/(xeff(T,H)−xc)
g

are predicted to scale with ρ(T,H) with the same expo-
nent (RH(ρxys) ∼ ρg/t) near the percolation threshold



S.K. Wong et al.: A phenomenological model of percolating magnetic nanostructures 485

in our phenomenology, which is consistent with existing
data where g/t ∼ 0.8 within experimental accuracy [29].

Perhaps the most surprising result in our phenomeno-
logical model is that the values of exponents t ∼ 3.6 and
g ∼ 2.9 deduced experimentally [11] are large compared
with the corresponding values t ∼ 2.0 and g ∼ 0.4 ob-
tained in the usual classical percolation models [13,27].
In particular, the large enhancement of the critical ex-
ponent g (a factor of 7 over the theoretical value of 0.4)
is responsible for the large magnitude of Hall resistance
observed near the percolation threshold, whereas the rela-
tively smaller enhancement in t (by a factor of 1.8) seems
to be the reason why the enhancement in magnetoresis-
tance is not as drastic as the Hall effect. It should be
pointed out that similar enhancement in the t-exponent
has been previously observed in experiments on continuum
peroclating systems using silver-coated-glass–Teflon ran-
dom composites [30]. The experimentally observed large
t-exponent is hence consistent with the continuum perco-
lation picture employed in the present model. The key to
understand the giant Hall effect seems to lie in the prob-
lem of understanding the physical origin of these unusually
large values of critical exponents. Within the continuum
peroclation picture, the enhancement in the exponents
over their classical values arises from a wide distribution
of resistances. This distribution, in turn, is sensitive to
the size distribution of grains, the metal volume fraction,
temperature, and magnetic field in ferromagnetic granular
films.

4 Summary

In summary, we have identified a few unique correlated
features in transport properties in percolating magnetic
nanostructures exhibiting giant Hall effect. These features
include the correlation between a − log(T )-like tempera-
ture dependent resistivity and a particle size distribution
having a large fraction of small nanometer sized particles,
the power law dependence between the magnetoresistivity
and the room temperature resistivity, and that of the tem-
perature dependent part of resistivity and room tempera-
ture resistivity. These unique features are explained within
a phenomenological model developed in this work, assum-
ing the presence of nanometer sized particles in the per-
colating conducting channels, whose contribution to the
conduction is sensitive to temperature and the external
magnetic field. Note that similar ideas have been employed
to explain the temperature and bias-voltage dependence of
the magnetoresistance in percolating magnetic nanostruc-
tures in the insulating side [31]. We believe that the key
to understand the origin of the giant Hall effect lies in the
understanding of the unusually large critical exponents.
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